Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma.
نویسندگان
چکیده
The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.
منابع مشابه
Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.
Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory ...
متن کاملSymplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport.
Stems that develop secondary vascular tissue (i.e. xylem and phloem derived from the vascular cambium) have unique demands on transport owing to their mass and longevity. Transport of water and assimilates must occur over long distances, while the increasing physical separation of xylem and phloem requires radial transport. Developing secondary tissue is itself a strong sink positioned between ...
متن کاملDo ray cells provide a pathway for radial water movement in the stems of conifer trees?
PREMISE OF THE STUDY The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray parenc...
متن کاملStem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions
The early culmination of maximum radial growth (RG) in late spring has been found in several coniferous species in a dry inner Alpine environment. We hypothesized that an early decrease in RG is an adaptation to cope with drought stress, which might require an early switch of carbon (C) allocation to belowground organs. To test this hypothesis, we experimentally subjected six-year-old Norway sp...
متن کاملGlutamine Transfer from Xylem to Phloem and Translocation to Developing Leaves of Populus deltoides.
The distribution of (14)C from xylem-borne [(14)C]glutamine, the major nitrogen compound moving in xylem sap of cottonwood (Populus deltoides Bartr. ex Marsh), was followed in rapidly growing shoots with a combination of autoradiographic, microautoradiographic, and radioassay techniques. Autoradiography and (14)C analyses of tissues showed that xylem-borne glutamine did not move with the transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 167 3 شماره
صفحات -
تاریخ انتشار 2015